PHYSICAL REVIEW E 77, 061901 (2008)

Evolutionary model with Turing machines

. . .1 . 2
Giovanni Feverati"* and Fabio Musso”

3,1

"Laboratoire de Physique Theorique LAPTH, CNRS, UMR 5108, associé a I’Université de Savoie,
9, Chemin de Bellevue, Boite Postale 110, 74941, Annecy le Vieux Cedex, France
2Dipartimento di fisica, Universita degli Studi di Roma TRE and Istituto Nazionale di Fisica Nucleare,
Sezione di Roma TRE, Via della Vasca Navale 84, 00146 Roma, Italy
3Departamento de Fisica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
(Received 3 December 2007; published 3 June 2008)

The development of a large noncoding fraction in eukaryotic DNA and the phenomenon of the code bloat in
the field of evolutionary computations show a striking similarity. This seems to suggest that (in the presence of
mechanisms of code growth) the evolution of a complex code cannot be attained without maintaining a large
inactive fraction. To test this hypothesis we performed computer simulations of an evolutionary toy model for
Turing machines, studying the relations among fitness and coding versus noncoding ratio while varying mu-
tation and code growth rates. The results suggest that, in our model, having a large reservoir of noncoding
states constitutes a great (long term) evolutionary advantage.

DOI: 10.1103/PhysRevE.77.061901

I. INTRODUCTION

The “C-value enigma” refers to the fact that DNA size
variation among eukaryote species show no relation to the
number of coding genes or to organismal complexity. The
discovery that, in eukaryotes, the great majority of DNA is
(protein) noncoding, led to a possible solution of the para-
dox. Indeed, if there exists “noninformative” DNA, then
there is no need for a correlation between organismal com-
plexity and the total amount of DNA. On the other hand,
there is no consensus on the actual fraction of the noncoding
part that has to be considered “noninformative.” Moreover,
the reason why eukaryotes should accumulate and maintain
such a large amount of noncoding DNA is still debated. At
least four different theories have been formulated to answer
this question: “junk DNA,” “selfish DNA,” “nucleoskeletal”
and “nucleotypical” theory (for a review, see [1], and the
references therein). According to the first two theories, in
eukaryotes there is an upward mutation pressure acting to
increase DNA content without any direct benefit for the
“host” (but, on the contrary, with a slight harm). This in-
creasing tendency will continue until the mutation pressure is
balanced by natural selection acting on the phenotypic level.
The last two theories state, vice versa, that DNA size is di-
rectly related to cell size (in a “coevolutionary” or “caus-
ative” way, respectively) and it is consequently adjusted by
natural selection in such a way to obtain the optimal dimen-
sion of the cells.

A common feature of all these theories is that the actual
content of the added extra DNA is insignificant. Therefore
such DNA can be freely mutated and it can be viewed as a
reservoir of raw material for the production of new genes.
The relevance of this process for evolution has been empha-
sized by Ohno [2] in the “junk DNA” hypothesis context and
by [3] in the “selfish DNA” one (however, for an opposite
point of view, see, for example, [4]).

*feverati @lapp.in2p3.fr
"musso @fis.uniroma3.it

1539-3755/2008/77(6)/061901(13)

061901-1

PACS number(s): 87.10.—e

Evolutionary algorithms are stochastic search methods
that mimic the language of natural biological evolution [5].
They operate on a population of potential solutions to a
given problem applying the principle of survival of the fittest
to produce better and better approximations to a solution. At
each generation, a new set of approximations is created by
the process of selecting individuals according to their level
of fitness in the problem domain and reproducing them using
operators borrowed from natural genetics. This process leads
to the evolution of populations of individuals that are better
suited to their environment than the individuals that they
were created from, just as in natural adaptation. The formal
codification of a solution is called its “genome” (or geno-
type) while its actual behavior is the “phenotype.” Fitness is
evaluated on the phenotype.1 Evolutionary calculations often
show the phenomenon of the “code bloat,” namely, a major
growth of the genome size occurring without a significant
improvement in fitness [6]. It manifests itself by the presence
of regions of code that do nothing and can be mutated or
removed without affecting the fitness. We will call these re-
gions “noncoding”; a popular name for them is also “in-
trons,” in analogy with those portions in real genes that are
not translated into sequences of amino acids. We will call the
active regions ‘“coding”; they are also often called “exons.”
In the context of evolutionary algorithms, code bloat consti-
tutes a major problem; indeed, it can lead to memory or
computational time exhaustion before an optimal algorithm
has been obtained. To avoid this phenomenon it is usually
necessary to introduce a selective disadvantage against larger
genomes; however, the selective disadvantage has to be care-
fully tuned, since a bad choice can drastically slow down the
evolution. Many hypotheses have been formulated to explain

'There is a slight difference among the concept of fitness in the
biological and evolutionary algorithms domains. In the former, fit-
ness is associated to a phenotype by measuring the relative number
of offspring it has generated; in the latter, on the contrary, an abso-
lute value of fitness is associated to each phenotype and determines
the relative number of offspring it will generate

©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevE.77.061901

GIOVANNI FEVERATI AND FABIO MUSSO

PHYSICAL REVIEW E 77, 061901 (2008)

FIG. 1. Graphical representa-
tion of a Turing machine at time ¢,

in the internal state s(¢), located
on the k(r)th cell of an infinite

this phenomenon (especially in the framework of “genetic
programming”) [6]: “hitchhiking,” “defense against cross-
over,” “removal bias,” and “fitness caused diffusion.” The
first two impute code bloat to crossover. Indeed, according to
the “hitchhiking” hypothesis, noncoding parts attached to
“important” parts of code are likely to be propagated in the
genome by crossover. On the other hand, for the “defense
against crossover” hypothesis, algorithms with large noncod-
ing fractions are selected since they have a smaller probabil-
ity that their coding parts are disrupted by crossover. The
“removal bias” hypothesis ascribes code bloat to the fact that
a deletion involving a noncoding part will most probably
become disadvantageous if it is larger than the noncoding
part itself. On the other hand, an insertion in a noncoding
part will always be neutral whatever be the size of the in-
serted code. So, selection will suppress large deletions but
not large insertions, creating a bias in favor of the latter.
Finally, up to the “fitness caused diffusion” hypothesis, the
number of large-size highly fit programs is much larger than
the small-size ones. So code bloat can be described as the
evolutionary model going toward its ergodic equilibrium.
While the objects of evolution are very different in the
biological and algorithmic contexts, the concepts of survival,
reproduction, and selection are very similar so that the name
of “artificial life” is given to these “in silico” simulations of
life [5]. This analogy makes plausible that some general fea-
tures can be common to both systems. In particular, the two
phenomena of the C-value enigma and code bloat appear
surprisingly similar: the (genetic or algorithmic) code during
its evolution devotes a large part of itself to do, apparently,
nothing. With the idea that the evolution of large noncoding
parts is a feature of evolutionary models “tout court,” we
decided to study the relations among fitness and coding ver-
sus noncoding ratio for different values of mutation and code
growth rates in a particular evolutionary algorithm. The ad-
vantage of working with evolutionary algorithms is that we
can exactly associate a fitness value to an individual’s geno-
type and we can clearly and unambiguously distinguish its
noncoding by its coding parts. We will use Turing machines
(TM) to encode our algorithms, identifying the set of their
internal states with the genome.2 Specifically, we start with
an initial population of trivial 1-state Turing machines and let
them evolve for many generations. At each generation every
Turing machine undergoes three processes: mutation (with a
rate p,,), states increase (with a rate p;), and selection and

’For our aims using TMs is more convenient than using tree based
programs as in genetic programming; indeed, we can define inde-
pendent rates of mutation and code growth, whereas, in genetic
programming, mutation also affects genome size.

tape.

reproduction3 (measuring the relative fitness of the machines
in accordance with a properly specified task). Each Turing
machine state is characterized by two triplets. The triplets of
the final population are divided into noncoding and coding
triplets. We study how the fitness and the coding versus non-
coding ratio vary, changing the values of the mutation (p,,)
and the states increase (p;) rates. Let us emphasize that ours
is a “toy model,” namely, it is more a caricature than a de-
scription of the real phenomenon of DNA evolution.

II. WHAT IS A TURING MACHINE?

Turing machines are very simple symbol-manipulating
devices, which can be used to encode any feasible algorithm.
They were invented in 1936 by Alan Turing [7] and used as
abstract tools to investigate the problem of functions com-
putability.

In the following we give a description of Turing machines
adapted to our purposes. For a complete treatment of this
subject we refer to [8]. The Turing machine consists of a
movable head acting on an infinite tape. The tape consists of
discrete cells that can contain a 0 or a 1 symbol (Fig. 1). The
head has a finite number of internal states. At any time ¢ the
head is in a given internal state s(z) and it is located upon a
single cell k(7). It reads the symbol stored inside the cell and,
according to its internal state and the symbol read, performs
three actions:

(1) “write”: writes a new symbol on the k(r) cell,

(2) “move”: moves one cell on the right or on the left or
stays still [k(2)—k(z+1)],

(3) “call”: changes its internal state to a new state
[s(t)—s(t+1)].

Accordingly, a state can be specified by two triplets
“write-move-call” listing the actions to undertake after read-
ing, respectively, a 0 or 1 symbol. The following is an ex-
ample of a possible state:

r
0 1-Right-3
1 0-Left—7

so that, if the head is in the state s(#)=r and reads 0, it writes
a 1, moves one cell right, and goes in the state 3, while

3We discarded crossover in this step to keep the model as simple
as possible.

061901-2

EVOLUTIONARY MODEL WITH TURING MACHINES

if it reads 1, it writes 0, moves left, and goes in the state 7.
There is a distinguished state that causes the machine to halt
(“Halt state”). The tape (r=0)
input data for the algorithm encoded by the Turing
machine while the final tape (i.e., the one obtained after
the machine has halted) gives the output. The head
of the machine is initially in the state s(0)=1 and it
is conventionally located upon the cell containing the
leftmost 1.

We give here a working example of a Turing machine that
performs the sum of two numbers.

initial specifies the

1

1-Right-1

01 110110 -
1

1-Right-1

0111011020 N
2

1-Right-2

01111110 N
2

0-Left-3

01111110 _

In the paradigm of artificial life, a Turing machine is an
organism; its set of states is the genotype and the output tape
is the phenotype. In this frame it is natural to classify as
noncoding, those triplets that are never used by the TM, as
the third state triplet (_-_-_) corresponding to the read value
0 in the above machine. Notice that whatever input tape is
provided, this triplet is never used. In general, the most com-
mon case is that the distinction between coding and noncod-
ing triplets depends on the specific choice of the input tape.
In this sense the input tape can be interpreted as an extremely
powerful epigenetic conditioning that influences the activa-
tion of the various triplets of the TM.

The finite state machines used in the context of evolution-
ary programming (Fogel, 1962 [5]) are a subclass of Turing
machines with right only movement. We will not make use
of them but cite them as the first appearance of similar de-
vices in the field of artificial life.

III. MODEL

Since we want to perform computer simulations, we need
to use a tape of finite length that we fix to 300 cells.
Conventionally, our machines always start from the

PHYSICAL REVIEW E 77, 061901 (2008)

Read\state 1 2 3
0 1-Right-2 0-Left-3 -
1 1-Right—1 1-Right-2 0-_-Halt

where the underscore symbol means that the corresponding
entry can be arbitrarily chosen without affecting the algo-
rithm. A positive integer number 7 is represented on the tape
by a contiguous string of n ones preceded and followed by a
zero digit; for example, ...01110... represents the number
three. Then the sum of 3+2 is performed by the given ma-
chine in the following steps:

1
1-Right-1
01110110 -
1
1-Right-2
01110110 _
2
1-Right-2
01111110 _
3
0-_—Halt
01111110 i

leftmost cell whatever its content is. If the machine runs
out of the tape (both on the left or on the right) it is halted.
Since it is quite easy to generate machines that run forever,
we also need to fix a maximum number of time steps, there-
fore we choose to force halting the machine if it reaches
4000 steps.

We begin with a population of 300 I-state TM of the
following form:

1
0 0-Still-Halt
1 1 -Still-Halt

and let them evolve for 200 000 generations. At each genera-
tion every TM undergoes the following three processes (in
this order):

(1) states increase,

(2) mutation,

(3) selection and reproduction.

State increase. In this phase, with a probability p;, the TM
passes from N to N+1 states by the addition of the further
state

061901-3

GIOVANNI FEVERATI AND FABIO MUSSO

N+1
0 0-Still—Halt
1 1-Still-Halt

As it will become clear from the definition of the
mutation process, this state will be initially noncoding
since it cannot be called by any other state. The only way it
can be activated is if a mutation in a coding state changes
the state call to N+1. Notice that, when called, this
particular state does not change the tape and halts the
machine. Consequently, the activation of this state is
mainly harmful or neutral and it can be advantageous
only in exceptional cases, so that the TM can benefit from
the added states only if they are mutated before their
activation.

Mutation. During mutation, all entries of each state of the
TM are randomly changed with probability p,,. The new en-
try is randomly chosen among all corresponding permitted
values, excluding the original one. The permitted values
are

(1) 0 or 1 for the “write” entries;

(2) Right, Still, Left for the “move” entries;

(3) the Halt state or an integer from 1 to the number of
states N of the machine for the “call” entries.

This mechanism of mutation is reminiscent of the
biological point mutation. We have not implemented other
biological mechanisms such as traslocation, inversion,
deletion, etc.

Selection and reproduction. In the selection and reproduc-
tion phase a new population is created from the actual one
(old population). The number of offspring of a TM is deter-
mined by its “fitness” and, to a minor extent, by chance. The
fitness of a TM is a function that measures how well the
output tape of the machine reproduces a given “goal” tape
starting from a prescribed input tape. We compute it in the
following way. The fitness is initially set to zero. Then the
output tape and the goal tape are compared cell by cell. The
fitness is increased by one for any 1 on the output tape that
has a matching 1 on the goal tape and it is decreased by
3 for any 1 on the output tape that matches a 0 on the goal
tape.

As a selection process, we use what in the field of evolu-
tionary algorithms is known as “tournament selection of size
2”. Namely, two TMs are randomly extracted from the old
population; they run on the input tape and a fitness value is
assigned to them according to their output tapes. The
fitness values are compared and the machine which scores
higher creates two copies of itself in the new population,
while the other is eliminated (asexual reproduction). If
the fitness values are equal, each TM creates a copy of itself
in the new population. The two TMs that were chosen for
the tournament are eliminated from the old population

PHYSICAL REVIEW E 77, 061901 (2008)

and the process restarts until the exhaustion of the old
population.

For our aims, this selection mechanism has many advan-
tages. Since an increase in the fitness is quite rare we are
strongly interested in the survival of the best TM, which
is automatically granted by the selection mechanism.
Moreover, having a very small population (due to computa-
tional time reasons) we would like to maintain a maximal
“biodiversity,” On the other hand, selection implies that
TMs with higher fitness have to generate a higher number of
offspring, so that they will eventually colonize all the
population decreasing the biodiversity. Our selection mecha-
nism ensures that this colonization does not happen too fast.
Indeed, the expected number of offspring for the TMs
belonging to the best fitness group (those Turing machines
that share the best fitness) varies from 1 to 2, depending on
the size of this group. The expected number of offspring
will be 2 only when there is a single TM in the group and it
will progressively decrease to 1 when the group size in-
creases. Finally, it will be exactly one when the best fitness
group coincides with the whole population. Another phe-
nomenon limiting biodiversity is genetic drift. In our case
such a phenomenon is completely absent, since the tourna-
ment preserves both TMs if they score equally.4 This feature
makes this selection procedure also computationally fast,
since in the case of an even result the code needs to do
nothing.

IV. SIMULATIONS

In this section we discuss the various choices of
parameters adopted for computer simulations with our
model. The initial tape was permanently fixed to contain
only zeroes. Of course, many other choices are possible, as
giving a completely different initial tape or varying it with
generations. As we said in Sec. II, the input tape can be
interpreted as an epigenetic conditioning. Since we
want to keep our model as simple as possible, we decided
to keep the input tape fixed. Since we use the symbol
1 to measure the fitness, a tape made entirely of 0 is
the most convenient choice. We will define noncoding
triplets relative to this choice of input tape. That is, a triplet
of a TM will be called noncoding if it is never executed
when the TM runs on the input tape made of 300 zeroes. This
implies that the values of a noncoding triplet can be arbi-
trarily changed without affecting the corresponding output
tape.

We performed many simulations with different values of
the rates p;,p,,, two choices for the “goal” tape and ten
choices for the seed of the random number generator.

The states-increase rate has been chosen in the following
set of values:

*Observe that two TMs can be very different and share the same
score.

061901-4

EVOLUTIONARY MODEL WITH TURING MACHINES PHYSICAL REVIEW E 77, 061901 (2008)
1 1 1 1 1 1 1 1 1 1 1
Di [= e .. . (1)

These values were generated starting from the smallest one and requiring an approximate g ratio between consecutive
numbers. As resulted from some trials, this particular ratio was seen to be the optimal one.
The mutation rate takes the following values:

1 1 1 1 1 1 1 1 1 1 1 11
€ ; ; ; ; ; ; v S 2
P {20360 12339 7478 4532 2747 1665 1009 611 371 225 136 83 50} @

constructed in the same way as p;, but with an approximate ratio of 0.6.

The goal tapes are chosen according to the criterion of providing two difficult and qualitatively different tasks for a TM; in
this sense the distribution of the ones on the goal tape has to be extremely nonregular since a periodic distribution is a very
easy task for a TM.

We decided to use a goal tape with ones on the cell positions corresponding to prime numbers (with 1 included for
convenience) and zeroes elsewhere:

1110101000.1010001010.0010000010.1000001000.1010001000.0010000010.1000001000.1010000010.
0010000010.0000001000.1010001010.0010000000.0000001000.1000001010.0000000010.1000001000,
0010001000.0010000010.1000000000.1010001010.0000000000.1000000000.0010001010.0010000010,

1000000000.1000001000.0010000010.1000001000.1010000000.0010000000.

In the previous expression we inserted a dot every ten cells to facilitate the reading. Our second goal tape is given by the binary
expression of the decimal part of 7, namely (7—3),;, as follows:

0010010000.1111110110.1010100010.0010000101.1010001100.0010001101.0011000100.1100011001,
1000101000.1011100000.0011011100.0001110011.0100010010.1001000000.1001001110.0000100010,
0010100110.0111110011.0001110100.0000001000.0010111011.1110101001.1000111011.0001001110,

0110110010.0010010100.0101001010.0000100001.1110011000.1110001101.

Notice that while for prime numbers the ones become progressively rarer so that the task becomes progressively more difficult,
in the case of the digits of 7, the ones are more or less equally distributed. Another difference is that prime numbers are always
odd (with the exception of 2) so that in the goal tape two ones are separated by at least one zero. On the contrary, the digits
of 7 can form clusters of ones of arbitrary length.

According to our definition, the maximal possible value for the fitness is 63 for the prime numbers and 125 for the digits
of . The program for the simulation has been written in C and we used the native random number generator. We tested that
its randomness is suitable for our purposes.

We provide an example of a TM obtained after 20 000 generations, with a states-increase rate p;=1/3333, a mutation rate
Pn=1/1009, and prime numbers task.

1 2 3 4 5 6 7 8

0 1-Right-4 1-Right-5 1-Right—-6 1-Right-3 1-Right-7 O0-Right-2 1-Left—-7 0-Still-8
1 1-Stll-3 0-Still-2 0-Still-3 1-Right—-3 0-Left—4 1-Left—1 O-Left—Halt 0—Right—2

061901-5

GIOVANNI FEVERATI AND FABIO MUSSO

1
1-Right—4
00O0O0OO0OO0ODO0ODO _
3
1-Right—6
11000000 -
2
1-Right-5
1110 0 00O R
7
1-Left-7
11101100 -
H

We observe that this TM reaches a fitness of 5 with eight
states. The eight coding triplets are written in red while the
noncoding ones are written in black. Accordingly, the coding
triplets amount to 50% of the total triplets. We notice also
that this machine writes a 1 in the sixth cell only to come
back later and cancel it. So this is clearly not the most eco-
nomic TM with the same performance. As we will see, this is
a typical feature of the TMs obtained through our model, for
certain choices p;,p,,.

fitness

-25
logyo pi
-3

-35

-2
25

-4

PHYSICAL REVIEW E 77, 061901 (2008)

4
1-Right-3
000000 -
6
0-Right-2
110000 0. -
5
1-Right-7
1101000 _
7
0-Left—Halt
1101110 .
[
V. RESULTS

We start examining the best fitness reached by the popu-
lation of Turing machines, as shown in Figs. 2 and 3. The
most evident effect is the mainly monotonic growth of fitness
with the states-increase rate p; [see, in particular, Figs. 2(c)
and 3(c)], occurring at almost all values of the mutation rate.
This effect is particularly interesting in combination with the
observation that the total number of states of a TM grows
approximately proportional to p; [actually, it is approxi-

FIG. 2. (Color online) For the case of prime

logigpi 3
35

(a) (b)

10g1 Pm

numbers, in (a) we show the 3D plot of the best
fitness value in the population, averaged on the
ten different seeds, as a function of the states-
increase rate p; and of the mutation rate p,,. The
three orthogonal projections of (a) are also

fitness
fitness

shown.

-4 -35 -3

logyo pi
(c) (d)

logyo pm

-25 -2

061901-6

EVOLUTIONARY MODEL WITH TURING MACHINES

fitness

25

logyo pi
-3

35

4]

PHYSICAL REVIEW E 77, 061901 (2008)

-4 35 3

(b)

- 25 2
1og 1 Pm

FIG. 3. (Color online) For the case of digits of
, in (a) we show the 3D plot of the best fitness
value in the population, averaged on the ten dif-
ferent seeds, as a function of the states-increase
rate p; and of the mutation rate p,,. The three

fitness
fitness

orthogonal projections of (a) are also shown.

logyo pi

(c) (d)

mately given by the number of generations times the states-
increase rate; see later, Eq. (3)], therefore we state that popu-
lations of machines with a larger number of states are those
where a higher best fitness can be obtained. Similarly, Figs. 4
and 5 indicate that populations of machines with a larger
number of states, i.e., obtained with a larger value of p;,
reach a better fitness at all times, namely, after any number
of generations. Indeed, for both tasks, the various curves are

logy pm

ordered according to increasing values of p; and they never
intersect. These are strong indications that, in our model, the
rate of evolution of a population of Turing machines is di-
rectly related to the rate of increase of the number of its
states.

Since the maximum values of fitness are obtained at the
largest examined values of p;, from Figs. 2 and 3 we cannot
state if they are true maxima (either absolute or relative) or

20 T T T Pi
. 0.033333
Task: prime numbers ——0.018519
0.010204
~0.005682
0.003145
0.001748
3 0.000972 FIG. 4. (Color online) Evolu-
3 ~0.000540 tion of the population best fitness
= 0.000300 . .
= with generations, averaged on
~|0.000167 the seeds and the mutation
0.000093 probabilities.
0 . . '
0 50000 100000 150000 200000
generations

061901-7

GIOVANNI FEVERATI AND FABIO MUSSO

PHYSICAL REVIEW E 77, 061901 (2008)

Pi

30

Task: digits of pi

fitness

0.033333

_—— 0.018519

0.010204

—|0.005682

0.003145

FIG. 5. (Color online) Evolu-
tion of the population best fitness
with generations, averaged on
the seeds and the mutation
probabilities.

0.001748

0.000972
0.000540

—|0-000300

--[0.000167

0.000093

100000
generations

possibly if a saturation will occur. To understand this would
require one to obtain new data with values of p; larger than
<L but this would largely increase the needed computational

30°
time. Indeed, a run with p,-:% requires about 100 times the
computational time needed for a run with p,«zm. This

great difference is caused by the fact that the number of
states of a TM grows approximately as the number of gen-
erations times the states-increase rate. In Sec. V A we will
test for the existence of a maximum at large values of p; by
performing a simplified simulation.

Another way to test the role of the states-increase rate on
fitness is to look at the final number of states. Indeed, since
the states-increase procedure alone does not affect the fit-
ness, one could expect that the number of states is not sub-
ject to selection. On the other hand, if machines with more
states evolve faster, one should expect that the number of
states has to be positively selected. We stress the fact that
this selection mechanism is completely indirect, in the sense
that there is a greater probability that a TM with more states
develops an advantageous mutation. In the following Table I

we report the observed final number of states N, averaged
on the population, the mutation rate, and the seeds, for all
values of the states-increase rate. We also report the number
of states N, expected under the assumption that it is not a
selected character so that it is determined only by chance.

3)

Finally, we also indicate the relative difference among the
two values,

Nexp = 200 000p; + 1.

Ny — N,
(% diff) = 100—22—=%2

exp

From Table I we observe for both tasks that Ny, is signifi-

cantly larger than N, for p; small. This indicates that, in

150000 200000

such cases, there is a positive selection on the number of
states.”
Moreover, it is evident that the relative difference be-

tween N, and N.yp decreases progressively as p; increases.
This decrease is an expected phenomenon, since also the
relative standard deviation of the distribution of N, de-
creases while p; increases.

o 1

Nexp 1200 000p;

Finally, we observe that for the primes task the relative dif-
ferences are larger than those of the digits of the 7 task. This
effect is probably due to the fact that it is initially easier for
a TM to increase its fitness for the primes task than for the
digits of the 7 one, as can be clearly seen from Figs. 4 and 5;
this creates a strong selective bias toward TMs with more
states for the first generations. This initial easiness basically
follows from the three consecutive ones at the very begin-
ning of the primes goal tape.

In Fig. 6 we give a three-dimensional view of the number
of coding triplets averaged on the fittest machines in the
population and on the seeds, for every p;,p,,- These plots
closely resemble those for the fitnesses Figs. 2(a) and 3(a),
showing a strict correlation between the two values. In
particular, the maximum fitness and maximum number of
coding triplets occur at intermediate values of p,,, while for
both large and small ones the fitness and number of coding
triplets rapidly decrease. We give some explanations for this
behavior.

SSimultaneous mutations in a given TM are allowed. This means
that the growth in the number of states cannot act as a shield against
harmful mutations.

061901-8

EVOLUTIONARY MODEL WITH TURING MACHINES

PHYSICAL REVIEW E 77, 061901 (2008)

TABLE 1. For the two tasks, we report the observed and expected number of states and their relative difference.

1 1 1 1

1
Task Pi 10 800 6000 3333 1852 1029

Nexp 19.5 343 61.0 109.0 195.4

Primes Nope 23.5 37.9 64.2 113.5 199.4
% diff 20.48 10.49 5.18 4.12 2.05

T Nobs 21.8 36.2 63.3 111.1 197.5
% diff 11.66 5.48 3.71 1.96 1.10

1 1 1 1 1 1

7 5% 76 % 53 30
3507 6299 11374 20418 37047 66677
3551 633.0 11442 20450 37012 6670.1

127 049 0.60 0.I5 -0.09 0.04
3564 6310 11346 20454 37100 6665.6
1.63 0.17 -0.25 0.17 0.14 -0.03

If the mutation rate is too small, it is clear that there is not
enough variation between a machine and its offspring for
selection to work on. On the contrary, high mutation rates
exert a limiting effect on the maximum number of coding
triplets allowed to a TM. Indeed a TM with many coding
triplets will most probably undergo a mutation affecting its

1 1 1 1 1

Task P 20360 12339 7478 532 2747
Primes Fitness 13.6 16.3 24.2 26.8 25.8
N, 85.6 130.9 257.8 291.8 2395

T Fitness 32.4 41.5 53.3 52.7 39.6
N, 237.0 3384 487.8 4249 3374

It is interesting to read this table together with Fig. 6. This
confirms that a TM with a higher mutation rate needs to limit
the number of its coding states. Moreover, the table and the
figure make evident that equal fitness machines can largely
differ in the numbers of coding states (even by a factor larger
than 2).

So far we have examined the relation among the number
of coding triplets and the fitness. Now we want to elucidate
the relation among the number of coding triplets N, and the

number of coding triplets
number of coding triplets

output tape. Since mutations in coding triplets are probably
nefarious, such a TM is likely doomed to extinction.

For the sake of clarity, we report the fitness and the mean
number of coding states for the maximum value of the states-
increase rate pl:;—o, averaged on the seeds and on the TM
with best fitness in the population.

1 1 1 1 1 e 1 1

1665 1009 611 371 225 136 83 50

26.9 20.8 192 163 119 9.7 7.0 52
2393 1408 946 619 351 225 13.0 11.0
422 29.7 248 188 158 128 100 3.0
2739 1717 1049 66.1 40.7 262 254 19.8

number of total triplets N,=2N (where N is the total number
of states). In Table II we report the ratio % The values of N,

and N, have been obtained averaging on the four values of
mutation rate corresponding to the four best fitness scores for
any value of p;. We excluded the other values of p,, from the
averaging to avoid the already discussed limiting effect on
the number of coding triplets that occur at extreme values of
the mutation rate. As it is evident from the table, on the

FIG. 6. (Color online) For the
prime numbers task (a) and digits
of 7 task (b), we show the number
of coding triplets averaged on the
fittest machines in the population
and on the seeds, for every p;,p,,.

061901-9

GIOVANNI FEVERATI AND FABIO MUSSO

PHYSICAL REVIEW E 77, 061901 (2008)

TABLE II. For the two tasks, we report the observed ratio of coding triplets versus the total number of triplets.

1 1

1

1 1 1 1 1

1 1 1
Task Pi 10 800 6000 3333 1852 1029 572 318 176 98 54 30
Primes % 0.262 0.255 0.183 0.139 0.091 0.098 0.041 0.044 0.030 0.021 0.019
T % 0.403 0.243 0.258 0.231 0.154 0.077 0.081 0.066 0.054 0.032 0.026
contrary of what happens for the fitness, the ratio %: basically The considerations in the first argument are

decreases with the states-increase rate.

By plotting the final number of coding triplets versus the
states-increase rate on a log-log scale (in Fig. 7), a power-
law relation clearly emerges. By fitting the data, we obtained
the following relation:

(4)

N.=15X 10317?'49 for prime numbers,

N,=2.5X10°p{>* for digits of r. (5)
On the other hand, the number of states has roughly a linear
growth [see Eq. (3)]. This explains the decreasing behavior

N, .
of 1/ observed in Table II.
The last datum we want to present is the mean fitness

increase f;,., namely, the final fitness divided by the number
of increments. After averaging on the mutation rate, the
states-increase rate, and the seeds, we finally obtain

fine=1.017 for prime numbers,

fine=1.073 for digits of . (6)
Notice that the minimum theoretical value is 1, meaning that
fitness always increases by one. Our values imply that jumps
in the fitness larger than one occur but are extremely rare. On
this basis, we would say that the evolution of our TMs is
more gradualist than saltationist. This is, in some way, sur-
prising since mutations occurring in the state-call entry of the
coding triplets almost always give rise to a radical mutation
of the TM.

A. Comparative run

There are two basic arguments that could lead the reader
to think that the fitness has to always be a monotonic increas-
ing function of p; (for all values of p;, regardless of the
choice of the target tape).

The first argument is that the fitness growth with p; has to
be considered expected and obvious [6] because the higher
the number of states is, the higher is the number of TMs that
solve the given task (goal tape). Moreover, each TM can be
thought to be contained in a bigger one just by adding some
noncoding states while the opposite is clearly false.

The second argument is that, since there is no direct cost
associated to the accumulation of noncoding triplets, while,
as we will argue in the next section, there is an indirect
advantage, again the fitness should always be a monotonic
increasing function of p;.

absolutely correct, but they apply also to bad genomes:
there are more large bad genomes than small bad genomes.
Given that the system can only experiment a limited (and
fixed) number of trials, having a larger set of TMs within
which to search just implies that a larger number of trials
will fail. In other words, increasing the number of states
means that there are more good solutions but does not mean
that it is easier to find them.’

Our answer to the second argument is that there is also
an indirect cost associated with a too fast accumulation of
noncoding triplets. This cost is strictly related to the argu-
ment given before. Indeed, suppose that there is an optimal
solution represented by a TM with M coding triplets. If,
at a given generation, the maximum number of states in
the TMs population is N, during the successive genera-
tions the evolutive algorithm will test TMs with a number
of coding states distributed between 1 and N. If N<M,
there is no chance of finding the optimal solution.
On the other hand, from some value of N>M on, the
number of TMs with M coding triplets that will be tested
at each generation, will progressively decrease. In other
words, the value of p; determines the “time” that the sys-
tem has to explore the set of TMs with a given number
of coding triplets. If p; is very large, the system will try a
lot of TMs with many coding triplets, risking missing some
optimal solutions with fewer ones. We think that this should
be a general phenomenon in our evolutive model for any
choice of the goal tape. In other words, we think that there is
both an indirect advantage and an indirect cost associated
with the accumulation of noncoding triplets, whose relative
weights depend on p; Since the maximum fitness is
bounded, the indirect advantage must decrease from some
value of p; on; vice versa, the indirect cost will reasonably
increase. In conclusion we expect that, in our evolutionary
model for TMs, the fitness will have a maximum for some
particular value of p;, depending on the particular choice of
the goal tape. Here we present the result of some simulations
where the goal tape and the number of TMs in the population
have been chosen in such a way that the maximum of the
fitness is obtained for a value of p; that we can computation-
ally afford.

In particular, we choose a goal tape with ones in the mul-
tiples of 5 positions. There is an obvious 5-states TM that
solves this task.

%0n the contrary, it is natural to think that from some number of
states on, it will be extremely more difficult to find them.

061901-10

EVOLUTIONARY MODEL WITH TURING MACHINES

1 2

PHYSICAL REVIEW E 77, 061901 (2008)

3 4 5

0—Right-3

We also took a very small population of 20 individuals, we
limited calculations to 1000 generations, and machines were
stopped at 400 time steps. The results of our simulations are
summarized in Table III.

As is evident from Table II, the fitness initially grows for
small values of p;, then saturates and then decreases at higher
values. Similar results have been obtained using as goal
tapes the multiples of 2 and 4 (data not shown).

We observe that, for the multiples of 5 goal tape, the TMs
use a small number of coding triples (on average, from 5 to
10 triplets), quite unrelated to the fitness or to the mutation
and states-increase rates. The reason is that the TMs tend to
imitate the 5-states machine indicated earlier (or an equiva-
lent one). Contrarily, in the other simulations we observed a
clear relashionship between fitness and the number of coding
triplets (see Fig. 7), which indicates that, in general, the TMs
that we obtain do not encode periodic (or other compact)
algorithms, but try to “guess” a 1 after another [as follows
also by the fact that the mean fitness increase is very near to
1; see Eq. (6)].

VI. CONCLUSIONS AND DISCUSSION

We developed an abstract model, mimicking biological
evolution, to understand if there is an “evolutive” advantage
in maintaining noncoding parts in an algorithm. We tried to
keep the model as simple as possible, while being compli-
cated enough not to allow easy predictions. Moreover we
required a model where it would be easy to distinguish be-
tween coding and noncoding states in an unambiguous way,
with a simple mechanism for the accumulation of noncoding
states, where the mutation rate and the states-increase rate
should be independent, with a simple mechanism of state

£ 400 e
E-‘ - Task: prime numbers -
o0
=
S wof + f :
o [-
. n -
- + _
__q;) 40 WL wt E
= [_
) f
Generations: 200000
10 sl PR | PR |
0.0001 0.001 0.01 ‘
pi

(a)

0-Right—4 0-Right-5 1 -Right—1

activation through mutation. The use of TMs fit perfectly
with these requirements.

For the sake of simplicity, we imposed various restrictions
on our model that can be relinquished to make the model
more realistic from a biological point of view. In particular,
we decided that

(1) noncoding states accumulate at a constant rate (deter-
mined by the states-increase rate p;) without any deletion
mechanism;

(2) there is no selective disadvantage associated with the
accumulation of both coding and noncoding states;

(3) the only mutation mechanism is given by point muta-
tion and it also occurs at a constant rate (determined by the
mutation rate p,,);

(4) there is a unique ecological niche (defined by the tar-
get tape);

(5) population is constant; and

(6) reproduction is asexual.

Because of the second point, the TMs we have obtained
are not economical in the use of coding triplets. Indeed it is
very easy to think of TMs with many fewer coding triplets
reaching a better fitness. It could be interesting to make fur-
ther studies trying to relinquish some of these restrictions.
However, letting fall any of these restrictions, would have
introduced further free parameters in our model and this was
undesirable for two reasons. First, the number of needed
simulations increases with the number of free parameters,
and second, it becomes more difficult to interpret unambigu-
ously the results.

We decided to use asexual reproduction since crossover
would have introduced other possible causes for the accumu-
lation of noncoding states (as in the “hitchhiking” and “de-
fense against crossover” explanations of code bloat) blurring
the final conclusions. Analogously, the processes of insertion

400 ; Tasic dghs ol pi w{ WL]L]
100]L wt
A
H |

Generations: 200000

10 tal M | M |
0.0001 0.001 0.01

(b)

40

number of coding triplets

pi

FIG. 7. (Color online) In a log-log scale, we present the relation between the average number of coding triplets N, and the states-increase
rate at the last generation. We average N, on the four values of the mutation rate corresponding to the four best fitness values for each p;.

061901-11

GIOVANNI FEVERATI AND FABIO MUSSO

TABLE III. We report the average fitness obtained after 1000
generations, with a population of 20 individuals, 20 different
choices of the seeds, and multiples of 5 as goal tape.

0.0025 0.005 0.01 0.02 004 0.06 p,
0.0022 0.1 0.1 03 02 05 0.1
0.005 0.1 0.2 23 06 05 0.1
0.022 0.0 3.1 32 28 07 0.1
0.05 0.0 32 140 74 03 00

0.1 0.0 0.1 102 29 21 0.0
0.22 0.1 0.0 55 64 02 00
0.5 0.0 2.1 31 02 0.1 0.0
Di 1 0.0 4.5 35 0.1 00 0.0

and deletion would have brought the “removal bias” effect.
None of this processes has any role in our model. Needless to
say, also the processes advocated by the biological explana-
tions (“junk DNA,” “selfish DNA,” “nucleoskeletal” and
“nucleotypical” theory) that we briefly sketched in the Intro-
duction, are ineffective in our model.

In our simulations we started from an initial population
completely unadapted to its ecological niche and we ob-
served that, for fixed p,,, higher values of p; correspond to a
faster evolution. This behavior is observed for both tasks on
the whole range of generations (see Figs. 4 and 5). The same
behavior is observed also for the number of coding triplets;
the striking similarity between Figs. 2(a) and 6(a), and Figs.
3(a) and 6(b) strongly suggests a direct link between the
number of coding triplets and the fitness reached at the end
of the evolutive runs. Since the number of coding states is a
monotonic increasing function of p; (see Fig. 7), the natural
conclusion is that TMs evolving under higher values of the
states-increase rate p; reach a better fitness since they suc-
ceed in generating a larger number of coding triplets. From
Table II we see that even if the number of coding triplets
grows, they progressively become a very small fraction of
the genome as p; increases (this fact also easily follows from
the observation that the number of coding triplets grows ap-
proximately as the square root of p; [see Egs. (4) and (5)],
while the total number of states grows as a linear function of
p; [see Eq. (3)]. So, we argue that the dependence of the
fitness on the states-increase rate p; is realized through the
following chain of implications: larger values of p; imply a
larger availability of noncoding triplets that, in its turn, im-
plies a greater probability of enlarging the number of coding
triplets. We give the following explanation of the latter state-
ment. During evolution, a mutation occurring in the state-call
entry of a coding state can activate a certain subset of non-
coding states. Since this activation is probably nefarious,
such mutations will almost always lead to the extinction of
the TM. Having a population of TMs with a large number of
noncoding states allows the system to try to activate a large
number of different subsets of them (by means of different
mutations in the state-call entries) until a good subset is
found. Such an explanation is supported by the fact that the
final number of states is a selected character (at least for low
values of p;) as discussed in Sec. V.

As we discussed in Sec. V A, we expect that the fitness
should have a maximum around some value of p; and it

PHYSICAL REVIEW E 77, 061901 (2008)

would be very interesting to determine its actual position for
the primes and 7 goal tapes. In such cases, the maximum
must lie outside the range of values of p; that we have con-
sidered. Moreover, it is worthwhile to notice that from Figs.
2(c) and 3(c), we seem to be still quite far from this maxi-
mum. This means that the optimal coding versus noncoding
ratio, in our model, is probably much less than 2%. Explor-
ing the region p;>1/30 could provide interesting informa-
tion but is computationally quite expensive.

A. Back to biology

In this section we put forward some biological specula-
tions inspired by our model. There are two ways of identify-
ing TMs with biological entities and they suggest two ways
to which the accumulation of noncoding free to mutate DNA
can play a role for “evolvability.” In the first one we identify
TMs with organisms and coding states with genes. We have
to stress that the mechanism of transcription is different in
the two contexts. For TMs transcription is serial, so that
states must be transcribed, one at a time, in a prescribed
order, while in biological organisms transcription of genes
can happen in parallel. We can interpret TM states as genes
accomplishing both a structural and regulatory function,
since a coding state both affects the output tape and specifies
which state has to be subsequently transcribed. From this
point of view, we can think of TMs in our simulations as
organisms increasing their gene pools by the addition of new
genes assembled from junk DNA. If the organisms possess
more junk DNA it is possible to test more “potential genes”
until a good one is found.”

On the other hand, we can identify the TMs with single
genes and their states as sequences of nucleotides. From this
point of view, transcription of states is as serial as the tran-
scription of the nucleotides composing a gene in DNA. The
difference now is that transcription of states can jump for-
ward and backward (with respect to the natural order of the
states) and passes also more than once through a given state,
while transcription of a gene proceeds always in the 5’ -3’
direction. Letting these differences apart, in this framework
we think of our simulations as the assembly of a new gene
by the addition of new nucleotide sequences. This interpre-
tation enhances the similarity between the activation mecha-
nism in our model and in biological organisms (a similarity
that in the previous interpretation is quite loose). Indeed, we
can compare our activation mechanism with point mutations
or with a deletion of all the stop codons of a gene. In bio-
logical organisms the activation of noncoding states can oc-
cur through many other mechanisms that are not taken into

"This long-term advantage is granted by the accumulation of non-
coding states; even if this accumulation is indirectly positively se-
lected in our model (see Table I), it is mainly obtained by increasing
the p; rate, therefore it is not an adaptative phenomenon, namely, is
not the effect of natural selection.

061901-12

EVOLUTIONARY MODEL WITH TURING MACHINES

account by our model. In our explanation of why TMs with a
large number of noncoding states evolve faster, the possibil-
ity of jumping in the transcription is essential. Indeed, with-
out this possibility, the TMs could test only the subset of
noncoding states just following the last coding state. We no-
tice that this is exactly what happens in prokaryotes, while in
eukaryotes the splicing of introns allows one to have jumps
in the transcription (at least in the forward direction). So, in
the framework of this second interpretation, our model sug-
gests that the mechanism of splicing could have a very sig-
nificant role for the evolvability of eukaryotes.

PHYSICAL REVIEW E 77, 061901 (2008)

ACKNOWLEDGMENTS

It is a pleasure to thank M. Caselle, A. Parmeggiani, G.
Satta, and S. Pagnotta for their helpful comments regarding
this work and for having read the manuscript. G.F. thanks
INFN for financial support. EM. acknowledges support by
the LAPTH and by the research training network “EUCLID.
Integrable Models and Applications: From Strings to
Condensed Matter,” Contract No. HPRN-CT-2002-00325.
We thank the “Centre de calcul IN2P3-CNRS” and the
“EUMEDGRID” INFN project for having allowed us to run
our simulations on their grid facilities.

[1]T. R. Gregory, Biol. Rev. Cambridge Philos. Soc. 76, 65
(2001).

[2] S. Ohno, Evolution by Gene Duplication (Springer-Verlag,
New York, 1970).

[3] H. K. Jain, Nature 288, 647 (1980).

[4] T. H. Bestor, Genetica 107, 289 (1999).

[5] D. B. Fogel, Proc. SPIE 6228, 622801 (2006).

[6] S. Luke, in Evolutionary Computation and the c-Value Para-
dox, Proceedings of GECCO’05 (ACM, Washington, D.C.,
USA, 2005).

[7] A. M. Turing, Proc. London Math. Soc. (2) 42, 230
(1937).

[8] M. Davis, Computability and Unsolvability (Dover, New York,
1982).

061901-13

